
Bug Algorithms

3/21/20181



Fundamental Problems

3/21/20182

 Chapter 2 of Dudek and Jenkin begins:
 "Before delving into the harsh realities of real robots...“

 lists 5 fundamental problems
1. path planning
2. localization
3. sensing or perception
4. mapping
5. simultaneous localization and planning



A Point Robot

3/21/20183

 represents a mobile robot as a point in the plane*

 the point P fully describes the state of the robot
 called pose or configuration

 robot motion causes the state to change



Free Space and Obstacles

3/21/20184

 the set of valid poses is called the free space Cfree of the robot

 the invalid poses are obstacles

obstacle obstacle

obstacle obstacle

freespace
point
robot

obstacle



Path Planning

3/21/20185

 is it possible for the robot to move to a goal configuration 
while remaining in Cfree ?

obstacle obstacle

obstacle obstacle

freespace
start obstacle goal



Path Planning Using Bugs

3/21/20186

 bug algorithms assume:
 point robot
 known goal location
 finite number of bounded obstacles
 robot can perfectly sense its position at all times
 robot can compute the distance between two points
 robot can remember where it has been
 robot can perfectly sense its local environment
 robot can instantaneously change direction



Bug Zero

3/21/20187

 assumes a perfect contact sensor
 repeat
 head towards goal
 if goal is reached then stop
 if an obstacle is reached then follow the boundary until heading 

towards the goal is again possible



Bug Zero

3/21/20188

obstacle obstacle

obstacle obstacle

freespace
start obstacle goal

a right turning bug



Bug Zero

3/21/20189

obstacle obstacle

obstacle obstacle

start

obstacle goal



Bug Zero

3/21/201810

 not guaranteed to reach the goal

obstacle

goal

start

gets stuck here because
as soon as it moves down
there is a path to the goal
that does not go through
the obstacle



Bug One

3/21/201811

 assumes a perfect contact sensor
 repeat:
 head toward goal T
 if goal is reached then stop
 if an obstacle is reached then

 remember the point of first contact H (the hit point)
 follow the boundary of the obstacle until returning to H and remember the 

point L (the leave point) closest to T from which the robot can depart 
directly towards T
 if no such point L exists then the goal is unreachable; stop

 move to L using the shortest boundary following path



Bug One

3/21/201812

obstacle obstacle

obstacle obstacle

start

obstacle goal



Bug One

3/21/201813

obstacle obstacle

obstacle obstacle

start

obstacle goal



Bug One

3/21/201814

obstacle obstacle

obstacle obstacle

start

obstacle goal



Bug One

3/21/201815

obstacle obstacle

obstacle obstacle

start

obstacle goal



Bug One

3/21/201816



Bug Two

3/21/201817

 Bug Two uses a line, called the m-line, from the start point to 
the goal
 sometimes called the direct path

obstacle obstacle

obstacle obstacle

start

obstacle goal
m-line, or direct path



Bug Two

3/21/201818

 assumes a perfect contact sensor
 repeat:
 head toward goal T along the m-line
 if goal is reached then stop
 if an obstacle is reached then

 remember the point of first contact H (the hit point)
 follow the boundary of the obstacle until the m-line is crossed at a leave 

point closer to the goal than H
 if no such point L exists then the goal is unreachable; stop

 leave the obstacle and head toward T



Bug Two

3/21/201819

obstacle obstacle

obstacle obstacle

start

obstacle goal
m-line, or direct path



Bug Two

3/21/201820



Bug One versus Bug Two

3/21/201821

 Bug One uses exhaustive search
 it considers all leave points before leaving the obstacle

 Bug Two uses greedy search
 it takes the first leave point that is closer to the goal



Sensing the Environment

3/21/201822

 Bug1 and Bug2 use a perfect contact sensor
 we might be able to achieve better performance if we equip 

the robot with a more powerful sensor
 a range sensor measures the distance to an obstacle; e.g., laser 

range finder
 emits a laser beam into the environment and senses reflections from 

obstacles
 essentially unidirectional, but the beam can be rotated to obtain 360 

degree coverage
 http://velodynelidar.com/lidar/lidar.aspx



Tangent Bug

3/21/201823

 assumes a perfect 360 degree range finder with a finite range
 measures the distance x to the first obstacle intersected by 

the ray from x with angle 
 has a maximum range beyond which all distance measurements are 

considered to be 

 the robot looks for discontinuities in x



Tangent Bug

3/21/201824

O1

O2

O3

O4 O5
O6



Tangent Bug

3/21/201825



 currently, bug thinks goal is reachable so it moves toward the 
goal
 called “motion to goal” mode

Tangent Bug

3/21/201826

goal



 once the obstacle is sensed, the bug needs to decide how to 
navigate around the obstacle

 move towards the sensed point Oi that minimizes the distance 
d(x, Oi) + d(Oi, qgoal) (called the heuristic distance)

Tangent Bug

3/21/201827

goal

O1

O2



 the bug senses O1 and O2 so it moves towards O2 because 

 d(x, O2) + d(O2, qgoal) < d(x, O1) + d(O1, qgoal)

Tangent Bug

3/21/201828

goal

O1

O2



 the bug senses O1 and O2 so it moves towards O2 because 

 d(x, O2) + d(O2, qgoal) < d(x, O1) + d(O1, qgoal)

Tangent Bug

3/21/201829

goal

O1

O2



Tangent Bug

3/21/201830



Tangent Bug

3/21/201831



Tangent Bug

3/21/201832

 heuristic distance as bug performs "motion to goal"



Tangent Bug

3/21/201833

 problem with concave obstacles
 eventually the robot reaches a point where d(x, Oi) + d(Oi, qgoal)

starts to increase

 once this happens, the robot switches to “boundary following” 
mode



Tangent Bug

3/21/201834

 when the robot switches to "boundary following" mode it 
continuously updates two distances and the discontinuities in 
the range sensor measurements
 ݀௪ௗ

 the shortest distance between the boundary which had been sensed since 
entering boundary following mode and the goal

 when the robot exits boundary following bode ݀௪ௗ is reset to ∞

 ݀
 the distance between the goal and the closest point on the followed 

obstacle that is within line of sight of the robot

 ܱ
 the set of points in line of sight of the robot that cause discontinuities in the 

range finder measurements x



Tangent Bug

3/21/201835

 at the moment the robot enters "boundary following" mode

݀௪ௗ



Tangent Bug

3/21/201836

 in "boundary following" mode, the robot moves towards the 
point  that is most consistent with the direction that the 
robot is currently moving in



Tangent Bug

3/21/201837

 robot moves towards ଵ



Tangent Bug

3/21/201838

 robot after moving



Tangent Bug

3/21/201839

 update ௪ௗ , , 

݀௪ௗ

ܯ



Tangent Bug

3/21/201840

 robot moves towards ଵ

ܯ



Tangent Bug

3/21/201841

 update ௪ௗ , , 

݀௪ௗ

ܯ



Tangent Bug

3/21/201842

 sometime later on (still in "boundary following" mode)

ܯ



Tangent Bug

3/21/201843

 update ௪ௗ , , 

݀௪ௗ

ܯ



Tangent Bug

3/21/201844

 sometime later on (still in "boundary following" mode)

ܯ



Tangent Bug

3/21/201845

 update ௪ௗ , , 

݀௪ௗ

ܯ



Tangent Bug

3/21/201846

 sometime later on (still in "boundary following" mode)

ܯ



Tangent Bug

3/21/201847

 update ௪ௗ , , 

݀௪ௗ

ܯ



Tangent Bug

3/21/201848

 eventually the robot reaches a point where
 ௪ௗ

 when this occurs the robot resumes "motion to goal" mode

݀௪ௗ ݀

ܯ



Tangent Bug

3/21/201849

 behavior when range sensor has a maximum distance of 0



Tangent Bug

3/21/201850

 behavior when range sensor has a maximum distance of 



Tangent Bug

3/21/201851

 behavior when range sensor has a maximum distance of 



Tangent Bug

3/21/201852

 behavior when range sensor has a maximum distance of 



Tangent Bug

3/21/201853

 behavior when range sensor has a finite maximum distance



 full details 
 Principles of Robot Motion: Theory, Algorithms, and Implementations
 http://www.library.yorku.ca/find/Record/2154237

 nice animation
 http://www.cs.cmu.edu/~motionplanning/student_gallery/2006/st/hw2pub.htm

Tangent Bug

3/21/201854


