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Fundamental Problems
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 Chapter 2 of Dudek and Jenkin begins:
 "Before delving into the harsh realities of real robots...“

 lists 5 fundamental problems
1. path planning
2. localization
3. sensing or perception
4. mapping
5. simultaneous localization and planning



A Point Robot
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 represents a mobile robot as a point in the plane*

 the point P fully describes the state of the robot
 called pose or configuration

 robot motion causes the state to change



Free Space and Obstacles
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 the set of valid poses is called the free space Cfree of the robot

 the invalid poses are obstacles
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Path Planning
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 is it possible for the robot to move to a goal configuration 
while remaining in Cfree ?
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Path Planning Using Bugs

3/21/20186

 bug algorithms assume:
 point robot
 known goal location
 finite number of bounded obstacles
 robot can perfectly sense its position at all times
 robot can compute the distance between two points
 robot can remember where it has been
 robot can perfectly sense its local environment
 robot can instantaneously change direction



Bug Zero
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 assumes a perfect contact sensor
 repeat
 head towards goal
 if goal is reached then stop
 if an obstacle is reached then follow the boundary until heading 

towards the goal is again possible



Bug Zero
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Bug Zero
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Bug Zero
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 not guaranteed to reach the goal
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Bug One
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 assumes a perfect contact sensor
 repeat:
 head toward goal T
 if goal is reached then stop
 if an obstacle is reached then

 remember the point of first contact H (the hit point)
 follow the boundary of the obstacle until returning to H and remember the 

point L (the leave point) closest to T from which the robot can depart 
directly towards T
 if no such point L exists then the goal is unreachable; stop

 move to L using the shortest boundary following path



Bug One
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Bug One
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Bug One
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Bug One
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Bug One
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Bug Two
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 Bug Two uses a line, called the m-line, from the start point to 
the goal
 sometimes called the direct path
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Bug Two
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 assumes a perfect contact sensor
 repeat:
 head toward goal T along the m-line
 if goal is reached then stop
 if an obstacle is reached then

 remember the point of first contact H (the hit point)
 follow the boundary of the obstacle until the m-line is crossed at a leave 

point closer to the goal than H
 if no such point L exists then the goal is unreachable; stop

 leave the obstacle and head toward T



Bug Two
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Bug Two
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Bug One versus Bug Two
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 Bug One uses exhaustive search
 it considers all leave points before leaving the obstacle

 Bug Two uses greedy search
 it takes the first leave point that is closer to the goal



Sensing the Environment
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 Bug1 and Bug2 use a perfect contact sensor
 we might be able to achieve better performance if we equip 

the robot with a more powerful sensor
 a range sensor measures the distance to an obstacle; e.g., laser 

range finder
 emits a laser beam into the environment and senses reflections from 

obstacles
 essentially unidirectional, but the beam can be rotated to obtain 360 

degree coverage
 http://velodynelidar.com/lidar/lidar.aspx



Tangent Bug
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 assumes a perfect 360 degree range finder with a finite range
 measures the distance x to the first obstacle intersected by 

the ray from x with angle 
 has a maximum range beyond which all distance measurements are 

considered to be 

 the robot looks for discontinuities in x



Tangent Bug

3/21/201824

O1

O2

O3

O4 O5
O6



Tangent Bug
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 currently, bug thinks goal is reachable so it moves toward the 
goal
 called “motion to goal” mode

Tangent Bug
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goal



 once the obstacle is sensed, the bug needs to decide how to 
navigate around the obstacle

 move towards the sensed point Oi that minimizes the distance 
d(x, Oi) + d(Oi, qgoal) (called the heuristic distance)

Tangent Bug
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 the bug senses O1 and O2 so it moves towards O2 because 

 d(x, O2) + d(O2, qgoal) < d(x, O1) + d(O1, qgoal)

Tangent Bug
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 the bug senses O1 and O2 so it moves towards O2 because 

 d(x, O2) + d(O2, qgoal) < d(x, O1) + d(O1, qgoal)

Tangent Bug

3/21/201829

goal

O1

O2



Tangent Bug
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Tangent Bug
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Tangent Bug
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 heuristic distance as bug performs "motion to goal"



Tangent Bug
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 problem with concave obstacles
 eventually the robot reaches a point where d(x, Oi) + d(Oi, qgoal)

starts to increase

 once this happens, the robot switches to “boundary following” 
mode



Tangent Bug
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 when the robot switches to "boundary following" mode it 
continuously updates two distances and the discontinuities in 
the range sensor measurements
 ݀௪ௗ

 the shortest distance between the boundary which had been sensed since 
entering boundary following mode and the goal

 when the robot exits boundary following bode ݀௪ௗ is reset to ∞

 ݀
 the distance between the goal and the closest point on the followed 

obstacle that is within line of sight of the robot

 ܱ
 the set of points in line of sight of the robot that cause discontinuities in the 

range finder measurements x



Tangent Bug
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 at the moment the robot enters "boundary following" mode

݀௪ௗ



Tangent Bug
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 in "boundary following" mode, the robot moves towards the 
point  that is most consistent with the direction that the 
robot is currently moving in



Tangent Bug
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 robot moves towards ଵ



Tangent Bug
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 robot after moving



Tangent Bug
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 update ௪ௗ , , 

݀௪ௗ

ܯ



Tangent Bug
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 robot moves towards ଵ
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Tangent Bug
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 update ௪ௗ , , 
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Tangent Bug
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 sometime later on (still in "boundary following" mode)

ܯ



Tangent Bug
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 update ௪ௗ , , 
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Tangent Bug
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 sometime later on (still in "boundary following" mode)
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Tangent Bug
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 update ௪ௗ , , 
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Tangent Bug
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 sometime later on (still in "boundary following" mode)
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Tangent Bug
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 update ௪ௗ , , 
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Tangent Bug
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 eventually the robot reaches a point where
 ௪ௗ

 when this occurs the robot resumes "motion to goal" mode

݀௪ௗ ݀
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Tangent Bug
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 behavior when range sensor has a maximum distance of 0



Tangent Bug

3/21/201850

 behavior when range sensor has a maximum distance of 



Tangent Bug
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 behavior when range sensor has a maximum distance of 



Tangent Bug
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 behavior when range sensor has a maximum distance of 



Tangent Bug
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 behavior when range sensor has a finite maximum distance



 full details 
 Principles of Robot Motion: Theory, Algorithms, and Implementations
 http://www.library.yorku.ca/find/Record/2154237

 nice animation
 http://www.cs.cmu.edu/~motionplanning/student_gallery/2006/st/hw2pub.htm
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